*	X	\cap	6	5	5	*
	/\	1 ()	' ()			

Reg. No. :												
------------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: X 10655

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020/ APRIL/MAY 2021

Second Semester

MA8251: ENGINEERING MATHEMATICS - II

[Common to all (Except Marine Engineering)]

(Regulations 2017)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

 $(10\times2=20 \text{ Marks})$

- 1. Given that α , β are the eigenvalues of the matrix $A=\begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$, form the matrix whose eigenvalues are α^2 , β^2 .
- 2. If the canonical form in the three variables u, v, w is given by $3v^2 + 15w^2$ corresponding to a quadratic form, then state the nature, index, signature and rank of the quadratic form.
- 3. Check whether the vector $\vec{F} = \left(y^2 z^2 + 3yz 2x\right)\hat{i} + \left(3xz + 2xy\right)\hat{j} + \left(3xy 2xz + 2z\right)\hat{k}$ is solenoidal or not.
- 4. State Green's theorem in a plane.
- 5. State the polar form of the Cauchy Riemann equations.
- 6. Find the invariant points of the mapping $w = \frac{z i}{1 iz}$.
- 7. State the Taylor series representation of an analytic function f(z) about z = a.
- 8. State the nature of the singularity of $f(z) = z \cos\left(\frac{1}{z}\right)$.
- 9. Using Laplace transform of derivatives, find the Laplace transform of cos²t.
- 10. Given $L\{f(t)\} = \frac{1}{s(s+1)(s+2)}$, find $\lim_{t\to 0} f(t)$.

PART – B (5×16=80 Marks)

- 11. a) i) The eigenvectors of a real symmetric matrix A corresponding to the eigenvalues 2, 3, 6 are respectively $(1, 0, -1)^T$, $(1, 1, 1)^T$ and $(-1, 2, -1)^T$. Find the matrix A. (8)
 - ii) Show that A satisfies its own characteristic equation and hence find A^8 if $A=\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$. (8)
 - b) i) Using Cayley-Hamilton theorem, find the inverse of the matrix $A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}.$ (8)
 - ii) Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 2xy 2yz$ into a canonical form using an orthogonal transformation. (8)
- 12. a) i) Find the angle between the normals to the surface $xy = z^2$ at the points (-2, -2, 2) and (1, 9, -3).
 - ii) Verify Stokes' theorem for $\vec{F} = xy\hat{i} 2yz\hat{j} zx\hat{k}$ where S is the open surface of the rectangular parallelopiped formed by the planes x = 0, x = 1, y = 0 y = 2 and z = 3 above the xoy-plane. (10)
 - b) i) Find the values of a, b, c so that $\vec{F} = (axy + bz^3)\hat{i} + (3x^2 cz)\hat{j} + (3xz^2 y)\hat{k}$ is irrotational. For these values of a, b, c, find also the scalar potential of \vec{F} . (8)
 - ii) Using Gauss' divergence theorem, evaluate $\iint_S \vec{F} \cdot \hat{n} \, dS$ where $\vec{F} = y\hat{i} + x\hat{j} + z^2 \, \hat{k}$ and S is the surface of the cylindrical region bounded by $x^2 + y^2 = a^2$, z = 0 and z = b.
- 13. a) i) Show that $u = e^x \cos y$ is harmonic. Find the analytic function w = u + iv = f(z) using Milne-Thompson method and hence find the conjugate harmonic function v. (10)

(OR)

ii) Given $w = u + iv = z^3$, verify that the families of curves $u = C_1$ and $v = C_2$ cut orthogonally. (6)

- b) i) If f(z) is an analytic function, then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$. (10)
 - ii) Find the image of the triangular region in the z-plane bounded by the lines x = 0, y = 0 and x + y = 1 under the transformation $w = e^{i\pi/4}z$ (6)
- 14. a) i) If $f(a) = \oint_C \frac{3z^2 + 7z + 1}{z a} dz$, C is the circle |z| = 2, then find the values of f(3), f'(1 + i) and f''(1 i). (8)
 - ii) Using Laurent's series expansion, find the residue of $f(z) = \frac{z^2}{(z-1)(z+2)^2}$ at its simple pole. (8)
 - b) Using contour integral, evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{\left(x^2 + 1\right)^2 \left(x^2 + 2x + 2\right)}.$ (16)
- 15. a) i) Using Laplace transform, evaluate $\int_{0}^{\infty} \left(\frac{\cos at \cos bt}{t} \right) dt$. (8)
 - ii) Using convolution theorem, find $L^{-1}\left(\frac{s^2}{\left(s^2+a^2\right)\!\left(s^2+b^2\right)}\right)$. (8)
 - b) i) Find the Laplace transform of the periodic function

$$f(t) = \begin{cases} t & 0 \le t \le a \\ 2a - t, & a \le t \le 2a \end{cases}$$
 with period 2a. (8)

ii) Using Laplace transform, solve $(D^2 + 4D + 13)y = e^{-t} \sin t$ given y = Dy = 0 at t = 0, $D = \frac{d}{dt}$. (8)